

RESEARCH STATEMENT

I am a full-stack roboticist focused on realizing safe and reliable real-world autonomy. I am particularly interested in **intelligently combining large-scale data-driven approaches with provably safe methods.** I enjoy working in multiple safety-critical domains like unmanned aerial vehicles, pilot-less aircraft and autonomous driving with applications in **human-robot interactions, robust risk-aware planning, long-tail uncertainity quantification and motion prediction.** My current efforts are focused on using large vision-language-action models to improve runtime safety for robotics.

EDUCATION

Carnegie Mellon University | School Of Computer Science (Robotics Institute)

Pittsburgh, PA 2020 – 2025 [Planned]

Doctor of Philosophy in Robotics Advisor: Dr. Sebastian Scherer

Carnegie Mellon University | School Of Computer Science (Robotics Institute)

Pittsburgh, PA

Master of Science in Robotics Advisor: Dr. Sebastian Scherer

GPA: 4.04 / 4.00

Indian Institute of Technology Kanpur | Department Of Aerospace Engineering

Kanpur, India

Masters and Bachelors of Technology (Intergrated)

Fall 2013 – Summer 2018

Fall 2018 - Summer 2020

Advisor: Dr. Mangal Kothari

CPI (PG): 10.0/10.0, CPI (UG): 8.6/10.0

Minors: Controls Systems (EE) and English Literature (Humanities)

RESEARCH EXPERIENCE

Autonomous Vehicles Research Group, NVIDIA Research

Santa Clara, CA

Director: Dr. Marco Pavone

Summer 2024

- Developed an action arbitration framework leveraging LLM-based Graph Retrieval-Augmented Generation (GraphRAG) to analyze text-based crash report data, enabling the generation of diverse and safety-critical counterfactual scenarios.
- Worked on improving out-of-distribution planning and prediction performance using evidential multimodal learning for self-driving vehicles.

Autonomous Systems Research Group, Microsoft Research

Director: Dr. Ashish Kapoor

Redmond, WA

Summer 2022

 Developed techniques that enable uncertainty quantification for large pre-trained models using learned temporal variational representations.

SKILLS & LICENSES

- o Licenses: FAA Private Pilot Certificate Part 61, FAA Remote Pilot Certificate FAA Part 107
- Languages: English, Hindi, Marathi (Native), French (A1 Level Certification)

AWARDS & RECOGNITION

- 2 A+ grades for exceptional performance in courses at Carnegie Mellon University
- o Carnegie Mellon University nomination for Microsoft Research PhD Fellowship
- o 2 Academic Excellence Awards (Dean's list) at Indian Institute of Technology Kanpur
- Awarded the IITK Summer Undergraduate Research Grant for Excellence (SURGE) for Summer 2015
- 4 A+ grades for exceptional performance in courses at Indian Institute of Technology Kanpur
- o All India Rank 2219 (amongst 13,00,000 students) in IIT-Joint Entrance Examination 2013

TEACHING EXPERIENCE

o Instructor, 98-266: Private Pilot Ground School , Carnegie Mellon University

Spring+Fall 2024

o TA, 16-833: Robot Localization and Mapping, Robotics Institute, Carnegie Mellon University

Spring 2021

o TA, 16-384: Robot Kinematics and Dynamics , Robotics Institute, Carnegie Mellon University

Fall 2020

o TA, AE361A: Aeromodel Design & Fabrication , Department of Aerospace Engineering, IIT Kanpur

Spring 2018

LEADERSHIP AND MENTORING

o Founding President, The Flying Club, Carnegie Mellon University	2021 - 2022
o Student Representative , Robotics Institute, Graduate Student Assembly, Carnegie Mellon University	2020 - Now
o President , Society of Aerospace Engineers, IIT Kanpur	2016 - 2017
o Student Representative , Departmental Undergraduate Committee, IIT Kanpur	2015 - 2016

PUBLICATIONS

Google Scholar Link: https://scholar.google.com/citations?user=T16259QAAAAJ

PAPERS

[1]	RuleFuser: An Evidential Bayes Approach for Rule Injection in Imitation Learned Planners for Robust Distribution Shifts Jay Patrikar, Sushant Veer*, Apoorva Sharma*, Marco Pavone & Sebastian Scherer Robotics: Science and Systems 2024 Workshop	stness under 2024
[2]	Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis Hu, Y., Xie, Q., Jain, V., Francis, J., Patrikar , J., Keetha, N., & Bisk, Y. Preprint ArXiv	2024
[3]	FoundLoc: Vision-based Onboard Aerial Localization in the Wild Y He, I Cisneros, N Keetha, J Patrikar, Ye Z, I Higgins, Y Hu, P Kapoor, S Scherer Preprint ArXiv	2023
[4]	AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting Jay Patrikar*, Ingrid Navarro*, Pablo Ortega-Kral*, Haichuan Wang, Zelin Ye, Jong Hoon Park, Jean Oh & Sebastian Scherer AIAA AVIATON 2024 {Best Paper Award}	2024
[5]	TartanAviation: Image, Speech, and ADS-B Trajectory Datasets for Terminal	
	Airspace Operations Jay Patrikar, Joao Dantas, Brady Moon, Milad Hamidi, Sourish Ghosh, Nikhil Keetha, Ian Higgins, Atharva Chandak, Takashi Yoneyama, & Sebastian Scherer Preprint ArXiv	2024
[6]	Pegasus Simulator: An Isaac Sim Framework for Multiple Aerial Vehicles Simulation Jacinto, M., Pinto, J., Patrikar, J., Keller, J., Cunha, R., Scherer, S., Pascoal, A. International Conference on Unmanned Aircraft Systems 2024	2023
[7]	Learned Tree Search for Long-Horizon Social Robot Navigation in Shared Airspace J Patrikar*, Ingrid Navarro*, J Dantas, R Baijal, I Higgins, Jean Oh, S Scherer IEEE Robotics and Automation Letters (RA-L)	2023
[8]	Follow The Rules: Online Signal Temporal Logic Tree Search for Guided Imitation Learning	
	in Stochastic Domains J Patrikar*, Jasmine Aloor*, Parv Kapoor, Jean Oh, S Scherer International Conference on Robotics and Automation (ICRA)	2023
[9]	AirTrack: Onboard Deep Learning Framework for Long-Range Aircraft Detection and Tracking Sourish Ghosh, J Patrikar, B Moon, Milad Hamdi, S Scherer International Conference on Robotics and Automation (ICRA)	2023
[10]	Quantification of Viable Drone Flight Hours Due to Weather Conditions A Sharma, J Patrikar , B Moon, C Samaras, S Scherer Journal of Transport Findings	2022
[11]	Challenges in Close-Proximity Safe and Seamless Operation of Manned and Unmanned	
	Aircraft in Shared Airspace J Patrikar, et al. International Conference on Robotics and Automation (ICRA)	2022
[12]	Predicting Like A Pilot: Dataset and Method to Predict Socially-Aware Aircraft Trajectories J Patrikar, B Moon, Jean Oh, S Scherer International Conference on Robotics and Automation (ICRA)	2022
[13]	CVaR-based Flight Energy Risk Assessment for Multirotor UAVs using a Deep Energy Model J Patrikar*, B Moon*, A Choudhry*, C Samaras, S Scherer International Conference on Robotics and Automation (ICRA)	2021
[14]	Adaptive Tube Library for Safe Online Planning Under Unknown Tracking Performance C Ho, J Patrikar, R Bonatti, S Scherer Workshop, Robotics: Science and Systems	2021
[15]	In-flight positional and energy use dataset of package delivery quadcopter UAVs T Rodrigues, J Patrikar, A Choudhry, J Feldgoise, V Arcot, A Gahlaut, S Lau, B Moon, B Wagner, S Matthews, S Scherer, C Samaras Nature Scientific Data	2020

[16]	Wind and the City: Utilizing UAV-Based In-Situ Measurements for Estimating Urban Wind Fields J Patrikar, B Moon, S Scherer International Conference on Intelligent Robots and Systems (IROS)	2020
[17]	Real-time Motion Planning of Curvature Continuous Trajectories for Urban UAV Operations	
[17]	in Wind J Patrikar, V Dugar, V Arcot, S Scherer International Conference on Unmanned Aircraft Systems (ICUAS)	2020
[18]	Nested Saturation Based Guidance Law for Unmanned Aerial Vehicles J Patrikar, VR Makkapati, A Pattanaik, H Parwana, M Kothari Journal of Dynamic Systems, Measurement, and Control, ASME	2019
[19]	Sequential Auto-Landing of Multiple UAVs using Control Constrained Path Following J Patrikar, VR Makkapati, M Kothari AIAA Guidance, Navigation, and Control Conference	2019
[20]	Convolutional Neural Network Based Sensors for Mobile Robot Relocalization J Patrikar*, H Sinha*, EG Dhekane*, G Pandey, M Kothari 23rd International Conference on Methods & Models in Automation & Robotics	2018
[21]	A novel fully quaternion based nonlinear attitude and position controller H Parwana, J Patrikar, M Kothari AIAA Guidance, Navigation, and Control Conference	2018
[22]	A Low-Cost Tilt-Augmented Quadrotor Helicopter: Modeling and Control M Bhargavapuri, J Patrikar, SR Sahoo, M Kothari International Conference on Unmanned Aircraft Systems (ICUAS)	2018
[23]	MARAAL: A Low Altitude Long Endurance Solar Powered UAV For Surveillance and Mapping Applications VS Dwivedi, J Patrikar, A Addamane, AK Ghosh 23rd International Conference on Methods & Models in Automation & Robotics	2018
INV	VENTION DISCLOSURES	
[1]	AmeliaTF: A Large Model and Dataset for Airport Surface Movement Forecasting. Sebastian Scherer, Jean Oh, Jay Patrikar*, Ingrid Navarro*, Pablo Ortega-Kral*, Haichuan Wang, Zelin Ye, & Jong Hoon Park CMU Intellectual Property Disclosure no. 2024-170	2024
[2]	Using CVaR-based metrics for energy risk assessments of UAV flights. Jay Patrikar, Brady Moon, Arnav Choudhry, Sebastian Scherer and Constantinos Samaras CMU Intellectual Property Disclosure no. 2021-326	2022
[3]	Multi-camera visual detect & avoid system and detection algorithms. Sebastian Scherer, Sourish Ghosh, Jay Patrikar and Brady Moon CMU Intellectual Property Disclosure no. 2021-113	2021
[4]	Wind-Aware Planning for Last Mile Delivery Sebastian Scherer, Jay Patrikar, Vishal Dugar, Vaibhav Arcot and Constantinos Samaras CMU Intellectual Property Disclosure no. 2020-071	2020
THI	ESIS	
[1]	Wind-Field Estimation and Curvature Continuous Path Planning for Low Altitude Urban Aerial Mobility	
[0]	Master's Thesis, Tech. Report, CMU-RI-TR-20-30	2020
[2]	A 3D Guidance Law for Path Following of Unmanned Aerial Vehicles Master's Thesis, Tech. Report	2018